ISRAEL JOURNAL OF MATHEMATICS 168 (2008), 189-200
DOI: 10.1007/s11856-008-1063-5

MANIFOLDS WITHOUT %—GEODESICS

BY

WING KAl Ho

The Pennsylvania State University, University Park, PA
e-mail: ho_wk@math.psu.edu

ABSTRACT

We will show that for any positive integer k, there exists a smooth manifold
that has no %—geodesic.

1. Introduction

For compact length spaces, it is known that the classical marked length spec-
trum may not be continuous with respect to Gromov-Hausdorff limit [1]: there
exists a sequence of manifolds M;, M; — M in the Gromov-Hausdorff sense,
such that closed geodesics do not persist under this limit. C. Sormani has in-
troduced the % length spectrum L%(M)7 the set of lengths of %-geodesics
in M. A closed geodesic of length [ is called a %-geodesic if it is length mini-
mizing on every segment of length % Sormani proved that %—geodesics persist
under Gromov-Hausdorff limit, which implies that % length spectra are stable
under Gromov-Hausdorff convergence. For discussions about % length spec-
trum, see [2].

Sormani showed that every shortest homotopically non-trivial closed geodesic
is a %-geodesic7 for all k € N [see example below]. Sormani then proposed the
following question: does that exist k£ € N, such that every smooth, compact,
simply connected manifold has a %—geodesic? We address this question by
constructing metrics py on S2? for each k € N, such that (S2,px) has no i-

k
geodesic. That is, we will prove the following theorems.
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THEOREM 1.1: There exist a metric p; on S? such that (S?,ps) has no %—

geodesic.

THEOREM 1.1°: For any fixed k, there exist a metric py on S? such that (S?, px)
has no %—geodesic.

Before we proceed, let us note that these metrics on S? have non-negative
sectional curvature. Further, diam(Mj) is close to v/n2 + 1+ 1 and vol (M) is
close to (mn)/3, where n is a constant depending on k. In the following, we will
construct the manifolds explicitly.

2. Definition

Let M be a smooth manifold. v: S' — M be a closed geodesic parameterized by
arc length and have length [. ~ is called %—geodesic if it is distance minimizing
on every segment of length 51 Similarly, a %-geodesic is a closed geodesic that
is distance minimizing on every segment of length [/k.

Example (Lemma 4.1 of [2]): Suppose that M is not simply connected. Let ~
be a shortest homotopically non-trivial closed curve in M. Then v is a closed
geodesic (for instance, see [3]). Let us show that v is a 1-geodesic. Denote the
length of v by . Reasoning by contradiction, assume that there are two points
p, q on +y that are [/2 apart along +, and that can be connected by a geodesic v
that is shorter than [/2. The points p and ¢ divide v into two geodesics. Each
of them can be closed up by adding ;. Hence we represented ~y as a product of
two loops, each of which is shorter than . Since « is homotopically non-trivial,
so is at least one of these loops. This contradicts our assumption that v is a
shortest homotopically non-trivial loop.

By a segment of a geodesic v we mean the restriction of v to a closed interval.
A %—segment is a segment of length [/k. A loop is a finite union of segments

that bound a 2 dimensional disc.

3. Construction of the surfaces

Our goal is to show that, for every integer k > 2, there exists a smooth surface
M. that has no %—geodesic. In our construction, each My will be a surface of
revolution. First we start with k = 2, and then generalize to all k.
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THE SURFACE. Consider a curve in (R?, with the euclidean metric) that consists
of a straight line joining (0,1) and (n,0) (n to be determined later), and a straight
line from (0,1) to (0,0). These are just two sides of a right triangle. If we revolve
this curve about the x-axis, we get a cone K with circular base of radius 1 and
height n. Now smoothen the two angles on (0,1) and (n,0) by replacing a small
neighborhood of each of the angle with a smooth arc, so that when we revolve
it about the x-axis we get a smooth surface. The resulting surface is our Ms.
For the sake of simplicity, we create Mj in the way that the longest parallel (the
great parallel) has radius 1. Now, M, is diffeomorphic to S2, and looks like a
smoothened cone. Actually, since we alter arbitrarily small neighborhoods of
the angles, the surface is Gromov-Hausdorff close to K. For instance, such f
can be obtained by starting from the midpoint of the hypotenuse. We elongate
it by sliding the two ends to sharp angles, followed by a suitable rescaling. Note
that My has non-negative sectional curvature (Figure 1).

~
| U

n

Figure 1. Construction of Mj

The rest of this section is dedicated to proving the following statement:
ProrosiTioN 3.1: With n suitably large, Ms has no %—geodesic.

If we can prove Proposition 3.1, using the fact that having a %—geodesic is a
scale invariant concept, we can get the generalized case by rescaling n. To prove
the proposition, we will show that all closed geodesics in M5 are not %—geodesic.
We begin with the following observation:

LEMMA 3.2: %-geodesjc has no self-intersection.
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Proof. Suppose a closed geodesic «y of length [ has self-intersection. Then there
exists a segment 1 with two endpoints coincide, such that 7 has length < /2. To
see this, suppose v has at least one self-intersection. Then this self-intersection
splits v into two geodesics, such that the four endpoints coincide at one point.
(Think of the figure 8). It is easy to see that one of them has to have length
less or equal to /2. Now, any segment of length [/2 that contains n cannot be
distance minimizing. That is because the two endpoints of this segment can be
joined by a shorter path, obtained by deleting 7 from the segment. |

The reason that we consider surfaces of revolution is we can classify all
geodesics using Clairaut’s integral [6]: Given a geodesic, if we denote by
r the radius of the parallel which the geodesic intersects with, # be the angle of
intersection. Then the relation

(1) r cosf = const = c,

holds on the whole geodesic.
Using this we have the following

LEMMA 3.3: No closed geodesic can stay on one side of the great parallel (the
longest parallel), i.e. it must intersect the great parallel.

Proof. Firstly, if v passes either (n,0) or (0,0), then by Clairaut’s integral it has
to be a meridian, so it cannot stay on one side. Now suppose on the contrary
that the non-meridian geodesic v stays on one side. By compactness of -y, there
exist a shortest and longest parallel (with radius ry and rg), such that v is
tangential to both and lies between them. If vy = 7y, then ~ is a parallel.
This cannot happen, since any parallel of this kind is generated by the rotation
of a point of the profile curve where the tangent is not parallel to the axis of
revolution. None of these parallel can be geodesic [4]. Therefore we must have
r1 # ro. This contradicts the Clairaut’s integral since in this case, ¢ = r; and

C=T9. |

So any geodesic is uniquely determined by the following data: the point of
intersection with the great parallel and the angle of intersection . Now by
Clairaut’s integral, the angle o determines the constant ¢ = ¢,. Denote this
geodesic v4(t): 74(0)= the point of intersection with the great parallel.

Let us investigate all closed geodesics in Ms:
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Meridians (a = g) Meridians cannot be %-geodesic if n is large enough. To
see this, fix any meridian, its length is approximately 2(n + 1). Now, pick two
points p, g that lie on the same parallel and split the meridian into halves. The
distance between p and ¢ is approximately half of the length of the parallel and
thus is much shorter than the length of half-meridian.

Great parallel (o = 0): The longest parallel (with radius 1) of Ms cannot
be %—geodesic. Fix any two antipodal points p,q on the great parallel. The
distance between p and ¢ along the parallel is 7. However p and ¢ can be joined
by a path across the base. The length of this path equals approximately the
diameter of the great parallel. Which means p and g can be joined by a shorter
path. Hence the great parallel is not a %—geodesic.

Other closed geodesics (a € (0,7/2)) require more work. Without loss of gen-
erality, we can assume +/,,(0) is pointing into the cone. Let r(f) be the radius
of parallel intersecting v, at v,(t), and 6,(t) be angle of intersection. Observe
that when r, (to) = ca, for some ¢, € [0,1], v, is tangential to the parallel, and
then it will start to return [6]. Denote by R, the parallel where 7, start to turn
back.

Definition 3.4: For each « € [0,7/2), define the total rotation T,,(t), t € [0,{] to
be the net (oriented) angle of rotation of v, about the axis of revolution from

Yo (0) to 7o (t).

Example: When a=0, 7, is just the great parallel, Therefore T, (¢) = %t (de-
pending on the orientation chosen).

First, for any a # 7/2, |T4(t)|] is a monotonic increasing function. This
is equivalent to saying that any non-meridian geodesic ~ rotates only in one
direction. To prove this claim, assume on the contrary that v changes rota-
tional direction at some point. Then at this point, v should be tangential to a
meridian. By the uniqueness of geodesics (in a smooth manifold, a point and a
vector uniquely determine a geodesic), v should coincide with a meridian. This
contradicts the assumption that ~ is a non-meridian.

Now recall that v, (t) is the point when 7, turns back, we have the following

LEMMA 3.5: If |To(to)| > m, then v, has self-intersection.
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Proof. We know from Clairaut’s integral that -, cannot touch the great parallel.
So if |Ta(ta)| > m, the total rotation of v, in the cone area is strictly greater
than 27, which implies there is a self-intersection. |

We are now ready to list all the remaining geodesics in Ms, to simplify our
argument, let us divide M; into four areas. Recall that in our construction,
we smoothen 2 corners of the generating curve. Therefore, when we revolve it:
There is a curved cap at the tip (the cap), a thin curved belt around the great
parallel (the belt), a flat disc at the bottom (the disc) and the long cone (the
cone) [Figure 2]. Only the cap and the belt have non-zero curvature.

The remaining geodesics can be divided into three types:

a) Geodesics that never leave the belt before returning to the great parallel.
b) Geodesics that enter the cap.
c¢) Geodesics that enter the cone but miss the cap.

disc
tip
cone
belt

Figure 2. Four areas of My

There are two parallels; the one seperating the belt and the cone and the
one seperating the cone and the cap. Denote these two parallels by R’ and
R respectively. Now since in constructing My, the belt and the cap can be
arbitrarily thin. We can choose them to be so thin that for some chosen o’ and
o so that o/, (7/2 — ") < 7/2, we have R’ = R, and R” = R,. To make
the following arguments simpler, we also dilate M, proportionally so that R,
has length 1. There is no impact on all previous arguments because they held
on all our manifolds regardless of scaling and the region of smoothing. Also, we
denote the distance between R, and the great parallel by e, diameter of the
cap be €, where €, ¢’ < 1.

The three cases of geodesics are equivalent to:

a) a € (0,a)
b) a €[, 7/2)
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c) a€ld,a")

CaASE a): If v, wraps around M; twice or more, its winding number about the
base’s center is greater than 2, so 7, has self-intersection. Hence by lemma 3.2,
Y 1S not %—geodesic. If v, only wrap around M> once, then it enters each side
of the great parallel once. Hence 7,’s length is within 27 & 10e. Therefore ~,,
is similar to the great parallel: any two points p, ¢ dividing v, into halves can
be joined by a path of length < 2 + 10e. This is a shorter path. Therefore we
conclude that all geodesics in this case are not %—geodesic.

CASE b): Now, since v, connects the great parallel and some point in the cap,

Vo is of length at least (2n — €’). Then it is just like the meridian case: find two
2n—¢’
2

half-parallel is a shorter path. Hence no geodesic in case b can be %—geodesic.

points which are apart and lie on the same parallel. When n is large the

CASE c¢): If 7, enters the cone, then it must cross the parallel R,. So there is
an angle of intersection & between v, and R,. Define T(&), the first return
rotation to be the total rotation of v, from R,  and the point when it first hit
R, again (Figure 3).

Ran i

Figure 3. T'(&) = 2w

We need the following
LEMMA 3.6: T'(&) is monotonic increasing in & for all geodesics in case c.

Proof. Consider the universal cover of the cone. Construct it by starting with
an annulus, cut through one radius. Then take another copy of the same thing
and glue the left side of the cut from the first copy to the right side of the
second copy. Continuing infinitely we get the universal cover. It looks like a
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infinite spiral and is a topological infinite strip. A fundamental domain is a
sector (Figure 4).

cut glue

)

glue

Figure 4. The universal cover of the cone

Now this is a development of the cone area, any geodesic segment is a straight
line. Also, & is given by the angle of intersection with the outer circle. It is now
easy to see that T'(&) is monotonic increasing in &: Since we assume that Ry
has length 1, T'(&) is the length of the arc corresponding to the chord given by
Yo (Figure 5). |

fundamental
domain

(o))

T(a)

Figure 5. T'(&) is monotonic increasing

Finally, we claim that for any fix ( > e. When n is large enough, any -,
not contained in the (-neighborhood of the great parallel has self-intersection.
To see this, consider the fundamental domain (with arc length I(Ry/) = 1). A
chord connecting two end points of the arc is a geodesic vy, with T'(&) = 2.
Denote by L the distance between R, and 7,. Elementary calculation shows
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that L = n(1 — /1 — sin® 5=) — 0 as n — oo (Figure 6). So when n is large
enough such that L = (, the geodesic that turns back exactly at the boundary
of the ¢-neighborhood gives T'(&) = 27, hence it has self-intersection. Together
with Lemma 3.6., when ~,, is not contained in the {-neighborhood of the great
parallel, it has self-intersection. Therefore by Lemma 3.2, such geodesic cannot

be 1-geodesic.
2

Figure 6. L - 0asn — oo

Now, the remaining geodesics are those that sit inside the (-neighborhood of
the great parallel. Take ¢ < 1, this is similar to the case where the geodesics
is contained in the curved belt: any two points p, ¢ dividing 7, into halves can
be joined by a shorter path through the disc.

So if we choose n large enough such that all the previous criteria are met.
Then M5 has no %—geodesic and we finish the proof of Proposition 3.1 and thus
Theorem 1.1.

4. When k > 3
Now we move to prove the general case. The construction of My is similar to
that of Ms, except that we have to use larger n, thinner belt and smaller cap.

ProPOSITION 4.1: For any fixed k, M}, has no %—geodesjc.
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Similar to what we have done before, we will exhibit all possible geodesics.
First off, any closed geodesic v must intersect the great parallel (Lemma 3.3).
So as before we can use the angle of intersection « to characterize the geodesics.
In what followes we still assume that + has length .

Meridians: Meridians are not %—geodesic if n is large enough. Again, find two
points p, ¢ near the tip that contain a 1/k segment and lie on the same parallel. n
being large implies I/k is much larger than the length of any parallel. Therefore
there is a shorter path joining p, q.

Great parallel: The great parallel has length 27. Any two points p, g that
contain a 1/k segment ((27)/k long) of the great parallel can be joined by a
shorter path through the base. This is a chord on the disc plus some small
error. For any k, we can make the width of the smoothing to be narrow enough
so that the error term is much smaller than (27)/k. Therefore the great parallel
is not a %—geodesic.

Other geodesics: Again, these geodesics can be categorized into 3 types: stays
in the belt, goes into the cap and goes into the cone but not the cap.

1) In the belt: If the geodesic wraps around once, then it is similar to the
case of the great parallel: p, ¢ can be joined by a shorter path close to a chord of
the great parallel. If the geodesic wraps around m times, then for p, ¢ bounding
a 1 segment, they are apart by approximately (2mm)/k > (27)/k. Again, p,q
can be joined by a shorter path through the disc.

2) Into the cap: Similar to the case of k = 2, any geodesic that runs into the
cap has length at least 2n — ¢’ for some small €. We can find p, ¢ near the tip.

2n—¢’

Such that p, ¢ bound a 1/k segment (== long) of the geodesic, and lie on the

same parallel. Then p, g can be joined by a path close to a half-parallel which
is a shorter path.

3) Geodesics that run into the cone but miss the cap: Since k > 3, Lemma
3.2 no longer applies here. However, we have the following lemma:

LEMMA 4.2: For any 7, in case 3. If 7, has (k + 1) self-intersections in the
cone area. Then 7, is not a %—geodesjc.

Proof. Suppose 7, has (k + 1) self-intersections in the cone area. Recall that
by Clairaut’s integral, any geodesic of this form is symmetric about the merid-
ian that contains the point where the geodesic starts to turn back. The self-
intersections split v, into at least (2k + 1) segments. Let us label the corre-
sponding segments 1, 2, 2’, etc. (Figure 7). Notice that segment 1 forms a loop,
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segments 2 and 2’ form another loop and so on. There are altogether k loops

of this kind in the cone area.

~ A
A,

Figure 7. A geodesic in case 3

Now we consider the universal cover again. Since segment 1 is the only
one which is orthogonal to a meridian. It has to be strictly shorter than
length(segment i) + length(segment i) for 2 < i < k (Figure 8). That means
segment 1 is the shortest loop among the k loops in the cone area. Which im-
plies length(segment 1) < I/k. Any 1/k segment of -, containing segment 1
cannot be shortest path. Since we can connect the two endpoints by a shorter
path if we jump segment 1 at the point of intersection. |

Figure 8. Segment 1 has length <1/k.

Now, given any fixed ¢, ¢ < ¢ < 1/k. Using the same argument as k =
2: When n is large enough, the geodesic in figure 8 crosses at least (k + 1)
fundamental domains, therefore T'(&) > 2(k + 1) for all -, not contained
inside the ¢-neighborhood of the great parallel. This implies that v, has (k+1)
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self-intersections and by Lemma 4.2, 7, is not %—geodesic. If 7, is contained
inside the (-neighborhood, then ( <« % implies 7, is similar to those in case 1,
hence it cannot be %—geodesic.

So for n large enough, M} has no %—geodesic.

We have thus completed the proof of Proposition 4.1 and therefore Theorem
1.1
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