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ABSTRACT

We will show that for any positive integer k, there exists a smooth manifold

that has no 1
k
-geodesic.

1. Introduction

For compact length spaces, it is known that the classical marked length spec-

trum may not be continuous with respect to Gromov-Hausdorff limit [1]: there

exists a sequence of manifolds Mi, Mi → M in the Gromov-Hausdorff sense,

such that closed geodesics do not persist under this limit. C. Sormani has in-

troduced the 1

k
length spectrum L 1

k

(M), the set of lengths of 1

k
-geodesics

in M . A closed geodesic of length l is called a 1

k
-geodesic if it is length mini-

mizing on every segment of length l

k
. Sormani proved that 1

k
-geodesics persist

under Gromov-Hausdorff limit, which implies that 1

k
length spectra are stable

under Gromov-Hausdorff convergence. For discussions about 1

k
length spec-

trum, see [2].

Sormani showed that every shortest homotopically non-trivial closed geodesic

is a 1

k
-geodesic, for all k ∈ N [see example below]. Sormani then proposed the

following question: does that exist k ∈ N, such that every smooth, compact,

simply connected manifold has a 1

k
-geodesic? We address this question by

constructing metrics ρk on S2 for each k ∈ N, such that (S2, ρk) has no 1

k
-

geodesic. That is, we will prove the following theorems.
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Theorem 1.1: There exist a metric ρ2 on S2 such that (S2, ρ2) has no 1

2
-

geodesic.

Theorem 1.1’: For any fixed k, there exist a metric ρk on S2 such that (S2, ρk)

has no 1

k
-geodesic.

Before we proceed, let us note that these metrics on S2 have non-negative

sectional curvature. Further, diam(Mk) is close to
√

n2 + 1 + 1 and vol(Mk) is

close to (πn)/3, where n is a constant depending on k. In the following, we will

construct the manifolds explicitly.

2. Definition

Let M be a smooth manifold. γ: S1 → M be a closed geodesic parameterized by

arc length and have length l. γ is called 1

2
-geodesic if it is distance minimizing

on every segment of length l

2
. Similarly, a 1

k
-geodesic is a closed geodesic that

is distance minimizing on every segment of length l/k.

Example (Lemma 4.1 of [2]): Suppose that M is not simply connected. Let γ

be a shortest homotopically non-trivial closed curve in M . Then γ is a closed

geodesic (for instance, see [3]). Let us show that γ is a 1

2
-geodesic. Denote the

length of γ by l. Reasoning by contradiction, assume that there are two points

p, q on γ that are l/2 apart along γ, and that can be connected by a geodesic γ1

that is shorter than l/2. The points p and q divide γ into two geodesics. Each

of them can be closed up by adding γ1. Hence we represented γ as a product of

two loops, each of which is shorter than l. Since γ is homotopically non-trivial,

so is at least one of these loops. This contradicts our assumption that γ is a

shortest homotopically non-trivial loop.

By a segment of a geodesic γ we mean the restriction of γ to a closed interval.

A 1

k
-segment is a segment of length l/k. A loop is a finite union of segments

that bound a 2 dimensional disc.

3. Construction of the surfaces

Our goal is to show that, for every integer k > 2, there exists a smooth surface

Mk that has no 1

k
-geodesic. In our construction, each Mk will be a surface of

revolution. First we start with k = 2, and then generalize to all k.
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The surface. Consider a curve in (R2, with the euclidean metric) that consists

of a straight line joining (0,1) and (n,0) (n to be determined later), and a straight

line from (0,1) to (0,0). These are just two sides of a right triangle. If we revolve

this curve about the x-axis, we get a cone K with circular base of radius 1 and

height n. Now smoothen the two angles on (0,1) and (n,0) by replacing a small

neighborhood of each of the angle with a smooth arc, so that when we revolve

it about the x-axis we get a smooth surface. The resulting surface is our M2.

For the sake of simplicity, we create M2 in the way that the longest parallel (the

great parallel) has radius 1. Now, M2 is diffeomorphic to S2, and looks like a

smoothened cone. Actually, since we alter arbitrarily small neighborhoods of

the angles, the surface is Gromov-Hausdorff close to K. For instance, such f

can be obtained by starting from the midpoint of the hypotenuse. We elongate

it by sliding the two ends to sharp angles, followed by a suitable rescaling. Note

that M2 has non-negative sectional curvature (Figure 1).

1

n

Figure 1. Construction of Mk

The rest of this section is dedicated to proving the following statement:

Proposition 3.1: With n suitably large, M2 has no 1

2
-geodesic.

If we can prove Proposition 3.1, using the fact that having a 1

k
-geodesic is a

scale invariant concept, we can get the generalized case by rescaling n. To prove

the proposition, we will show that all closed geodesics in M2 are not 1

2
-geodesic.

We begin with the following observation:

Lemma 3.2:
1

2
-geodesic has no self-intersection.
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Proof. Suppose a closed geodesic γ of length l has self-intersection. Then there

exists a segment η with two endpoints coincide, such that η has length 6 l/2. To

see this, suppose γ has at least one self-intersection. Then this self-intersection

splits γ into two geodesics, such that the four endpoints coincide at one point.

(Think of the figure 8). It is easy to see that one of them has to have length

less or equal to l/2. Now, any segment of length l/2 that contains η cannot be

distance minimizing. That is because the two endpoints of this segment can be

joined by a shorter path, obtained by deleting η from the segment.

The reason that we consider surfaces of revolution is we can classify all

geodesics using Clairaut’s integral [6]: Given a geodesic, if we denote by

r the radius of the parallel which the geodesic intersects with, θ be the angle of

intersection. Then the relation

(1) r cos θ = const = c,

holds on the whole geodesic.

Using this we have the following

Lemma 3.3: No closed geodesic can stay on one side of the great parallel (the

longest parallel), i.e. it must intersect the great parallel.

Proof. Firstly, if γ passes either (n,0) or (0,0), then by Clairaut’s integral it has

to be a meridian, so it cannot stay on one side. Now suppose on the contrary

that the non-meridian geodesic γ stays on one side. By compactness of γ, there

exist a shortest and longest parallel (with radius r1 and r2), such that γ is

tangential to both and lies between them. If r1 = r2, then γ is a parallel.

This cannot happen, since any parallel of this kind is generated by the rotation

of a point of the profile curve where the tangent is not parallel to the axis of

revolution. None of these parallel can be geodesic [4]. Therefore we must have

r1 6= r2. This contradicts the Clairaut’s integral since in this case, c = r1 and

c = r2.

So any geodesic is uniquely determined by the following data: the point of

intersection with the great parallel and the angle of intersection α. Now by

Clairaut’s integral, the angle α determines the constant c = cα. Denote this

geodesic γα(t): γα(0)= the point of intersection with the great parallel.

Let us investigate all closed geodesics in M2:
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Meridians (α = π

2
): Meridians cannot be 1

2
-geodesic if n is large enough. To

see this, fix any meridian, its length is approximately 2(n + 1). Now, pick two

points p, q that lie on the same parallel and split the meridian into halves. The

distance between p and q is approximately half of the length of the parallel and

thus is much shorter than the length of half-meridian.

Great parallel (α = 0): The longest parallel (with radius 1) of M2 cannot

be 1

2
-geodesic. Fix any two antipodal points p, q on the great parallel. The

distance between p and q along the parallel is π. However p and q can be joined

by a path across the base. The length of this path equals approximately the

diameter of the great parallel. Which means p and q can be joined by a shorter

path. Hence the great parallel is not a 1

2
-geodesic.

Other closed geodesics (α ∈ (0, π/2)) require more work. Without loss of gen-

erality, we can assume γ′

α
(0) is pointing into the cone. Let rα(t) be the radius

of parallel intersecting γα at γα(t), and θα(t) be angle of intersection. Observe

that when rα(tα) = cα, for some tα ∈ [0, l], γα is tangential to the parallel, and

then it will start to return [6]. Denote by Rα the parallel where γα start to turn

back.

Definition 3.4: For each α ∈ [0, π/2), define the total rotation Tα(t), t ∈ [0, l] to

be the net (oriented) angle of rotation of γα about the axis of revolution from

γα(0) to γα(t).

Example: When α=0, γα is just the great parallel, Therefore Tα(t) = ±t (de-

pending on the orientation chosen).

First, for any α 6= π/2, |Tα(t)| is a monotonic increasing function. This

is equivalent to saying that any non-meridian geodesic γ rotates only in one

direction. To prove this claim, assume on the contrary that γ changes rota-

tional direction at some point. Then at this point, γ should be tangential to a

meridian. By the uniqueness of geodesics (in a smooth manifold, a point and a

vector uniquely determine a geodesic), γ should coincide with a meridian. This

contradicts the assumption that γ is a non-meridian.

Now recall that γα(tα) is the point when γα turns back, we have the following

Lemma 3.5: If |Tα(tα)| > π, then γα has self-intersection.
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Proof. We know from Clairaut’s integral that γα cannot touch the great parallel.

So if |Tα(tα)| > π, the total rotation of γα in the cone area is strictly greater

than 2π, which implies there is a self-intersection.

We are now ready to list all the remaining geodesics in M2, to simplify our

argument, let us divide M2 into four areas. Recall that in our construction,

we smoothen 2 corners of the generating curve. Therefore, when we revolve it:

There is a curved cap at the tip (the cap), a thin curved belt around the great

parallel (the belt), a flat disc at the bottom (the disc) and the long cone (the

cone) [Figure 2]. Only the cap and the belt have non-zero curvature.

The remaining geodesics can be divided into three types:

a) Geodesics that never leave the belt before returning to the great parallel.

b) Geodesics that enter the cap.

c) Geodesics that enter the cone but miss the cap.
n

disc

belt

cone

tip

Figure 2. Four areas of M2

There are two parallels; the one seperating the belt and the cone and the

one seperating the cone and the cap. Denote these two parallels by R′ and

R′′ respectively. Now since in constructing M2, the belt and the cap can be

arbitrarily thin. We can choose them to be so thin that for some chosen α′ and

α′′ so that α′, (π/2 − α′′) � π/2, we have R′ = Rα′ and R′′ = Rα′′ . To make

the following arguments simpler, we also dilate M2 proportionally so that Rα′

has length 1. There is no impact on all previous arguments because they held

on all our manifolds regardless of scaling and the region of smoothing. Also, we

denote the distance between Rα′ and the great parallel by ε, diameter of the

cap be ε′, where ε, ε′ � 1.

The three cases of geodesics are equivalent to:

a) α ∈ (0, α′)

b) α ∈ [α′′, π/2)
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c) α ∈ [α′, α′′)

Case a): If γα wraps around M2 twice or more, its winding number about the

base’s center is greater than 2, so γα has self-intersection. Hence by lemma 3.2,

γα is not 1

2
-geodesic. If γα only wrap around M2 once, then it enters each side

of the great parallel once. Hence γα’s length is within 2π ± 10ε. Therefore γα

is similar to the great parallel: any two points p, q dividing γα into halves can

be joined by a path of length ≤ 2 + 10ε. This is a shorter path. Therefore we

conclude that all geodesics in this case are not 1

2
-geodesic.

Case b): Now, since γα connects the great parallel and some point in the cap,

γα is of length at least (2n− ε′). Then it is just like the meridian case: find two

points which are 2n−ε
′

2
apart and lie on the same parallel. When n is large the

half-parallel is a shorter path. Hence no geodesic in case b can be 1

2
-geodesic.

Case c): If γα enters the cone, then it must cross the parallel Rα′ . So there is

an angle of intersection α̃ between γα and Rα′ . Define T (α̃), the first return

rotation to be the total rotation of γα from Rα′ and the point when it first hit

Rα′ again (Figure 3).

Figure 3. T (α̃) = 2π

We need the following

Lemma 3.6: T (α̃) is monotonic increasing in α̃ for all geodesics in case c.

Proof. Consider the universal cover of the cone. Construct it by starting with

an annulus, cut through one radius. Then take another copy of the same thing

and glue the left side of the cut from the first copy to the right side of the

second copy. Continuing infinitely we get the universal cover. It looks like a
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infinite spiral and is a topological infinite strip. A fundamental domain is a

sector (Figure 4).

cut glue

glue

Figure 4. The universal cover of the cone

Now this is a development of the cone area, any geodesic segment is a straight

line. Also, α̃ is given by the angle of intersection with the outer circle. It is now

easy to see that T (α̃) is monotonic increasing in α̃: Since we assume that Rα′

has length 1, T (α̃) is the length of the arc corresponding to the chord given by

γα (Figure 5).

fundamental
domain

Figure 5. T (α̃) is monotonic increasing

Finally, we claim that for any fix ζ ≥ ε. When n is large enough, any γα

not contained in the ζ-neighborhood of the great parallel has self-intersection.

To see this, consider the fundamental domain (with arc length l(Rα′) = 1). A

chord connecting two end points of the arc is a geodesic γα with T (α̃) = 2π.

Denote by L the distance between Rα′ and γα. Elementary calculation shows
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that L = n
(

1 −
√

1 − sin2 1

2n

)

→ 0 as n → ∞ (Figure 6). So when n is large

enough such that L = ζ, the geodesic that turns back exactly at the boundary

of the ζ-neighborhood gives T (α̃) = 2π, hence it has self-intersection. Together

with Lemma 3.6., when γα is not contained in the ζ-neighborhood of the great

parallel, it has self-intersection. Therefore by Lemma 3.2, such geodesic cannot

be 1

2
-geodesic.

n

n

L

Figure 6. L → 0 as n → ∞

Now, the remaining geodesics are those that sit inside the ζ-neighborhood of

the great parallel. Take ζ � 1, this is similar to the case where the geodesics

is contained in the curved belt: any two points p, q dividing γα into halves can

be joined by a shorter path through the disc.

So if we choose n large enough such that all the previous criteria are met.

Then M2 has no 1

2
-geodesic and we finish the proof of Proposition 3.1 and thus

Theorem 1.1.

4. When k ≥ 3

Now we move to prove the general case. The construction of Mk is similar to

that of M2, except that we have to use larger n, thinner belt and smaller cap.

Proposition 4.1: For any fixed k, Mk has no 1

k
-geodesic.
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Similar to what we have done before, we will exhibit all possible geodesics.

First off, any closed geodesic γ must intersect the great parallel (Lemma 3.3).

So as before we can use the angle of intersection α to characterize the geodesics.

In what followes we still assume that γ has length l.

Meridians: Meridians are not 1

k
-geodesic if n is large enough. Again, find two

points p, q near the tip that contain a 1/k segment and lie on the same parallel. n

being large implies l/k is much larger than the length of any parallel. Therefore

there is a shorter path joining p, q.

Great parallel: The great parallel has length 2π. Any two points p, q that

contain a 1/k segment ((2π)/k long) of the great parallel can be joined by a

shorter path through the base. This is a chord on the disc plus some small

error. For any k, we can make the width of the smoothing to be narrow enough

so that the error term is much smaller than (2π)/k. Therefore the great parallel

is not a 1

k
-geodesic.

Other geodesics: Again, these geodesics can be categorized into 3 types: stays

in the belt, goes into the cap and goes into the cone but not the cap.

1) In the belt: If the geodesic wraps around once, then it is similar to the

case of the great parallel: p, q can be joined by a shorter path close to a chord of

the great parallel. If the geodesic wraps around m times, then for p, q bounding

a 1

k
segment, they are apart by approximately (2mπ)/k > (2π)/k. Again, p, q

can be joined by a shorter path through the disc.

2) Into the cap: Similar to the case of k = 2, any geodesic that runs into the

cap has length at least 2n − ε′ for some small ε′. We can find p, q near the tip.

Such that p, q bound a 1/k segment (2n−ε
′

k
long) of the geodesic, and lie on the

same parallel. Then p, q can be joined by a path close to a half-parallel which

is a shorter path.

3) Geodesics that run into the cone but miss the cap: Since k ≥ 3, Lemma

3.2 no longer applies here. However, we have the following lemma:

Lemma 4.2: For any γα in case 3. If γα has (k + 1) self-intersections in the

cone area. Then γα is not a 1

k
-geodesic.

Proof. Suppose γα has (k + 1) self-intersections in the cone area. Recall that

by Clairaut’s integral, any geodesic of this form is symmetric about the merid-

ian that contains the point where the geodesic starts to turn back. The self-

intersections split γα into at least (2k + 1) segments. Let us label the corre-

sponding segments 1, 2, 2’, etc. (Figure 7). Notice that segment 1 forms a loop,
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segments 2 and 2’ form another loop and so on. There are altogether k loops

of this kind in the cone area.

1

2’ 3

2 3’

Figure 7. A geodesic in case 3

Now we consider the universal cover again. Since segment 1 is the only

one which is orthogonal to a meridian. It has to be strictly shorter than

length(segment i) + length(segment i′) for 2 ≤ i ≤ k (Figure 8). That means

segment 1 is the shortest loop among the k loops in the cone area. Which im-

plies length(segment 1) < l/k. Any 1/k segment of γα containing segment 1

cannot be shortest path. Since we can connect the two endpoints by a shorter

path if we jump segment 1 at the point of intersection.

3

2

1
2’

3’

Figure 8. Segment 1 has length ≤ l/k.

Now, given any fixed ζ, ε < ζ � 1/k. Using the same argument as k =

2: When n is large enough, the geodesic in figure 8 crosses at least (k + 1)

fundamental domains, therefore T (α̃) > 2(k + 1)π for all γα not contained

inside the ζ-neighborhood of the great parallel. This implies that γα has (k+1)
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self-intersections and by Lemma 4.2, γα is not 1

k
-geodesic. If γα is contained

inside the ζ-neighborhood, then ζ � 1

k
implies γα is similar to those in case 1,

hence it cannot be 1

k
-geodesic.

So for n large enough, Mk has no 1

k
-geodesic.

We have thus completed the proof of Proposition 4.1 and therefore Theorem

1.1’.
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